

#### ASIC for MEMS

UiO

3 November, 2005

# **ASIC** for **MEMS**

Agenda 3/11-05:

- Introduction
- Sensor-ASIC
- (Some) Practical Aspects of ASIC-Design
- Wrap-up





#### Introduction

Who am I?

- John Raaum. M.Sc. NTH 1991.
- 2 years at the Norwegian Defense Research Establishment (FFI)
- At Nordic Semiconductor since '94.
- At SensoNor '98.
- Senior Technical Manager
- Personal experience from the following sensor-applications:
  - **On-chip temperature sensor**
  - **On-chip voltage monitor**
  - Low-Power Piezo-resistive sensor for Tire-Pressure
  - Resonating sensor for airbag application
  - Piezo-resistive sensor for airbag application
  - **Optical-loop for keyless entry**
  - Capacitive interface for roll-over sensor (angular rate sensor)
  - **Ultrasonic flow-meter**



# NORDIC SEMICONDUCTOR IS

A 20 year old Fabless Semiconductor Company

Producer of standard "off-the-shelf" RF components

Turn-key developer and supplier of custom components

Intellectual Property (IP) supplier with advanced A/D, D/A and RF modules

Worldwide company with representatives on all continents

A leading Norwegian Technology Company listed on the Norwegian Stock Exchange



### SOC SUPPLY CUSTOMER WITH COST-EFFECTIVE COMPONENTS

#### Before: Tightly integrated value chain



Semiconductor business dominated by highly integrated companies such as Phillips, Motorola and Texas Instruments

#### Today: Disintegrated value chain



Economies of scale and huge capital investments has created highly specialised companies that together are most cost-effective than integrated companies



Nordic, the system integrator in the driver's seat



#### NORDIC IS A TURN KEY DEVELOPER OF CUSTOM SOLUTIONS



State-of-the art tools and subcontractors throughout process



#### **Sensor-ASICs**

The mission:

Signal conditioning, temperature compensation and data formatting of raw data from various types of sensors

Why?

Improved linearity, noise, accuracy, ...

How?

**Custom sensor-ASICs from Nordic Semiconductor** 



#### The operational chain



Key Issue: Conversion of physical parameters to electrical signals in a mechanical setting!



#### **Sensor-ASICs**

#### Typical spec of sensing element:

- Sensitivity with large tolerance: +/-30%
- High temperature drift of sensitivity: +/-15%
- Large zero-point error: +/-Full Scale Output (FSO)
- Large noise bandwidth: Mechanical filter with resonances
- Analog output (Whetstone measurement bridge)
- Capacitive / resonating element need for excitation
- Built-in self-test facility



### **Sensor-ASICs**

Typical spec of sensor product (Automotive example):

- Sensitivity with tight tolerance: +/-3%.
- Low temperature drift of sensitivity: +/-1.5%.
- Small zero-point error: +/-1% of FSO.
- Well controlled noise bandwidth.
- Minimised group delay.
- Any output format: Analog, PWM, SPI, parallel digital, current loop, ...

Even better accuracy for high end sensors.



#### **Resistive measurement bridge**

Signal:



$$Vin_{diff}(p) = Vip - Vin = (AVDD + n_{AVDD}) \cdot \frac{\Delta R(p)}{R} = AVDD \cdot \frac{\Delta R_{zero}}{R} + n_{AVDD} \cdot \frac{\Delta R_{zero}}{R} + AVDD \cdot \frac{\Delta R}{R} \cdot p + n_{AVDD} \cdot \frac{\Delta R}{R} \cdot p$$
$$Vin_{diff}(p) \approx V_{ofs} + noise + AVDD \cdot S_p \cdot p$$
$$=> Ratiometric output with sensitivity S_p$$



### Sensor / ASIC front-end



**Ratio-metric cancellation:** 

- AVDD-dependent input signal
- AVDD-dependent ADC reference voltages



#### **Accuracy Management**

**Purpose of Signal Conditioning in ASIC:** 

Reduce overall tolerance over PVT from +/-50-150% to +/-1-5%!

**Typical Overall Transfer Function:** 

 $V_{out}(p, AVDD, T, P) = AVDD \cdot S_p(T, P) \cdot p \cdot G_0(P) \cdot S(T, P)$ 

S(T,P) is typically a programmable N-order polynomal implementing the inverse temperature drift of  $S_p(T,P)$ .

 $G_0(P)$  is a programmable gain adjusting the sensitivity at room temperature.

High pass filters remove unintentional zero voltage (offset voltage).



# **Typical Signal Conditioning**



When you know your signal chain

- Do you know you input signal??



#### **Thermal Aspects**

Standard Model:









#### **Case: Frequency Modulating Sensor**



#### **Case: Frequency Modulating Sensor**



- 16 -

# **Tools and Methology**

**Essential for Design of Sensor-ASICs:** 

- Simulation Model of Sensing Element
- System and Signals Know-How

Make Your Spec Executable:

- Matlab/Simulink
- HDL-modelling
- ADMS
- SPICE
- Careful Budgeting (Monte Carlo Analysis)



# **Sensor-ASICs**

What to look for in Sensor- / ASIC-spec?

- ppm accuracy (including noise)
- Very low frequency filters
- Low power at elevated temperatures
- Start-up time
- Testability
- ...



#### **Define Your Design Environment**

**Specification with Parameter Budgeting** 

**Power-strategy** 

**ESD-strategy** 

**Bias-strategy** 

**Test-strategy** 

Floorplan (Area-estimates with Seal and Scribe)

Analog vs Digital - Optimize cost vs performance

**Process Options - Optimize cost vs performance** 



# **Workflow ASIC project**



- 1. Concept study: 2-3 weeks. Possible to use ASIC?
- 2. Pre-study: 3-6 weeks. Specification of ASIC.
- 3. Project: 3-6 months ASIC development (depending on project complexity)
- 4. Prototype production: 6-12 weeks. Implementation of production test...
- 5. Test at customer site: 4 weeks. Prototype test in customers application.
- 6. Industrialisation: 8-12 weeks. Qualification and transfer to production.
- 7. Production: Lot acceptance and yield monitoring..



# Reliability #1/2

All stages in the product development includes *product reliability* tasks.

The overall target is to create a robust, high quality product, meeting the specification and resistant to expected external stress.

The target of the product qualification is to prove that the product is resistant to expected external stress.



### Reliability #2/2

- Lifetime testing evaluate useful life
- Burn in removes Infants
- FIT-calculations determine MTTF



|        |           | NUMBER OF PARTS PER SYSTEM |          |          |         |         |         |        |        |        |
|--------|-----------|----------------------------|----------|----------|---------|---------|---------|--------|--------|--------|
| FIT    | 1         | 2                          | 4        | 8        | 16      | 32      | 64      | 128    | 256    | 512    |
| 1      | 114155.25 | 57077.63                   | 28538.81 | 14269.41 | 7134.70 | 3567.35 | 1783.68 | 891.84 | 445.92 | 222.96 |
| 10     | 11415.53  | 5707.76                    | 2853.88  | 1426.94  | 713.47  | 356.74  | 178.37  | 89.18  | 44.59  | 22.30  |
| 100    | 1141.55   | 570.78                     | 285.39   | 142.69   | 71.35   | 35.67   | 17.84   | 8.92   | 4.46   | 2.23   |
| 1,000  | 114.16    | 57.08                      | 28.54    | 14.27    | 7.13    | 3.57    | 1.78    | 0.89   | 0.45   | 0.22   |
| 10,000 | 11.42     | 5.71                       | 2.85     | 1.43     | 0.71    | 0.36    | 0.18    | 0.09   | 0.04   | 0.02   |



Figures from Micron TN-00-14

# Wrap-up

What should be remembered?

- Caution: Signal Conversion in Mechanical System
- Caution: Be Aware of Input Signal Spectrum
- Caution: Be Aware of Side-Effects of Important Functional Modules (Thermal effects ...)
- Caution: Unable to Make Simulation Model of Your Sensor => Unable to Design Signal Conditioning?
- Caution: Always Utilise Best Practice Mixed-Signal Design Methology
- Caution: Don't forget cost optimisation, production test and reliability!

